The uses the alternator output to keep the battery charged at a constant level under various electrical loads. Rotation of the excited field coil generates AC voltage in the stator. This alternating current is rectified through diodes to DC voltage having a waveform shown in the illustration at left. The average output voltage fluctuates slightly with the alternator load condition. The following schematic shows the Mitsubishi Space Wagon 4G9 Wiring Diagram.

Mitsubishi Space Wagon 4G9 Charging System Wiring Diagram

When the ignition switch is turned on, current flows in the field coil and initial excitation of the field coil occurs. When the stator coil begins to generate power after the engine is started, the field coil is excited by the output current of the stator coil.

The alternator output voltage rises as the field current increases and it falls as the field current decreases. When the battery voltage (alternator S terminal voltage) reaches a regulated voltage of approx. 14.4 V, the field current is cut off. When the battery voltage drops below the regulated voltage, the voltage regulator regulates the output voltage to a constant level by controlling the field current. In addition, when the field current is constant, the alternator output voltage rises as the engine speed increases.



Related Post

1993 Honda Civic Del Sol Electrical Harness Wiring Diagram
2009 Nissan Armada Wiring Diagram Body Electrical and Control System
1997 Infiniti QX4 Wiring Diagram and Electrical System Service and Troubleshooting
Exhaust Gas Recirculation (EGR) Temperature Sensor Circuit Schematic
Isuzu Hombre 4.3L Automatic Transmission Control System Wiring Diagram